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ABSTRACT An exhaustive computational exercise on a comprehensive set of
15 therapeutic kinase inhibitors was undertaken to identify as to which com-
pounds hit which kinase off-targets in the human kinome. Although the kinase
selectivity propensity of each inhibitor against∼480 kinase targets is predicted, we
compared our predictions to ∼280 kinase targets for which consistent experi-
mental data are available and demonstrate an overall average prediction accuracy
and specificity of ∼90%. A comparison of the predictions was extended to an
additional∼60 kinases for sorafenib and sunitinib as new experimental data were
reported recently with similar prediction accuracy. The successful predictive
capabilities allowed us to propose predictions on the remaining kinome targets
in an effort to repurpose known kinase inhibitors to these new kinase targets that
could hold therapeutic potential.
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Identifying and understanding small molecule kinase
inhibitor selectivity is a major challenge in advancing
potent kinase compounds to becoming drugs.1,2 Given

the large human kinome landscape, it is rather difficult to
profile very potent or early development/clinical compounds
across the ∼500 targets3 to gain upfront knowledge on
kinase specificity with the additional fact that not all kinases
could be screened in vitro. Small molecule kinase inhibitor
selectivity insights are usually gained by pursuing experi-
mental verifications on a representative or a comprehensive
subset of the kinase off-targets.4-8 Although the merits and
limitations of the selectivity screening paradigm could be
debated, they are often supposed to provide reasonable
knowledge and guidance enabling compound prioritization
in the decision tree.

In recent years, several computational approaches are
being reported in the literature to either complement
the experimental findings or to predict the overall kinase
off-target activity profiles.9-20 These approaches primarily
overcome the drawbacks of the one-dimensional sequence-
based comparison or kinase phylogeny that has been shown
to have limited predictive capabilities.21-23 Very recently,
Sheridan et al.24 reported a two-dimensional quantitative
structure-activity relationship (QSAR)-based modeling
approach to predict the kinase inhibitor binding profiles
on ∼160 unique kinases from the Karaman et al. experi-
mental data set25 along with other experimental data
sets. Their approach is based on several physicochemical
properties of the 29 residues surrounding the ATP bind-
ing site and assumes that all inhibitors occupy the whole
ATP binding site. For instance, small molecules like imatinib
that predominantly occupy the “base” subsite and not the
“sugar” or “phosphate” subsite should be differentiated from

ligands like staurosporine that occupy nearly all or most
other subpockets of the ATP binding site, and their binding
contributions need to be treated differently.

Several years ago, Sheinerman et al. developed the “bind-
ing site signature (BSS)” computational approach26 that uses
the three-dimensional (3D) X-ray structural information of a
kinase-inhibitor complex to predict the small molecule's
off-target kinase activity or potential selectivity profile. In
this letter, the application of this approach to predict the
selectivity propensity of a given inhibitor against each of the
∼480 members of the human kinome is presented. Unlike
several other methods mentioned earlier,9-20 the present
3D approach takes into account most of the residues that
make energetically quantifiable contact (“hot spot” residues)
with the ligand. This greatly removes the inherent bias
involved when considering residues that are part of the
ATP binding site irrespective of the occupancy of the ligand
in that particular subpocket.

To provide a reasonable validation for the approach,
the literature was surveyed to collect experimental data
sets for inhibitors that have been cocrystallized with the
kinase target and also evaluated systematically against
a large kinase panel. This resulted in the identification of
one data set reported by Karaman et al. consisting of 38
kinase inhibitors screened onmore than 280 unique human
kinases providing a complete 280� 38matrix of the kinase-
compound activity or selectivity space.25 Among the
38 kinase inhibitors, the 3D structure of the inhibitor bound
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complex was reported for 15 in the PDB, and so, this subset
was used in the evaluation of multikinase activity prediction
(Table S1 in the Supporting Information). A detailed descrip-
tion of the BSS computational approach and the steps
involved in kinase off-target activity prediction had been
reported earlier26 and briefly elaborated in the Supporting
Information.

Table 1 provides a summary of the kinase-inhibitor
complexes along with the reported activity by Karaman
et al.25 for the cocrystallized inhibitors against the kinase
targets. Additionally, the best activity for the inhibitor and
its associated target is given to provide guidance when
comparing and assessing the computational results. This
information is important since predictions based on high-
affinity ligand bound cocomplexes are expected to be more
reliable.26 Finally, the conformational state of the kinase as
reported in either the source or other literature27 or inter-
preted through visual inspection is also tabulated so that the
results can be compared uniformly where possible.

For comparing the predictions with experimental results,
inhibitors with experimental Kd e 100 nM are classified as
“actives” and the rest tagged as “inactives” (see the Support-
ing Information, Figure S1, for results obtained using differ-
ent Kd cutoff values). The predicted off-target “actives” are
defined as those kinase targets that possess the same
number of “hot spots” with similar residues26 conserved in
the same location in the kinome alignment as those identi-
fied for the kinase-inhibitor complex under investigation. It
should be pointed out that the residue conservation is

defined based on the type of interaction [(non)-polar, elec-
trostatic, etc.] with the inhibitor rather than the actual
residue property that is conventionally used. Figure 1 shows
the histogramplot for the number of kinase targets observed
to be active experimentally (green bars) and predicted to be
active computationally (yellow bars) for 20 kinase-inhibitor
complexes investigated here (also see Table S2 in the
Supporting Information). The results for the active (DFG-in;
Figure 1a) and inactive (DFG-out; Figure 1b) kinase confor-
mations are discussed separately.

The ∼90% overall prediction accuracy (recognizing the
experimentally “active” and “inactive” correctly) and speci-
ficity (recognizing the experimentally “inactive” correctly)
for the 10 DFG-in bound inhibitors suggest the prediction
results to be comparable with the experiments (Figure 1a).
Although a high number of false positives are predicted for
LY-333531 and gefitinib, most of the experimental actives
are indeed captured. Apart from these two instances, theBSS
approach does not overpredict the number of plausible
kinase off-target actives for the inhibitors considered in this
study. Even for the promiscuous inhibitor like staurosporine,
the predictions are quite conservative as compared to the
number of experimentally reported active kinase targets.
Similarly, the prediction appropriately captures highly selec-
tive inhibitors like erlotinib, VX-745, VX-680, and SB-203580
without much loss in mispredictions (Table 1). Among all of
the inhibitors considered in this class, roscovitine, by-far, had
the weakest best affinity (Kd ∼ 260 nM; Table 1) reported
for CSNK1D and had only 11 dose-response data reported.

Table 1. Summary of the Key Experimental Findings and Prediction Results for the Kinase Inhibitors under Investigation

PDB ID kinase conf. inhibitor X-ray targetb Kd x-ray
c Kd best

d best targete accuracy f sensitivityg specificityh

1KV2 DFG-out BIRB-796 P38A 0.37 0.37 P38A 0.96 0.44 0.98

2GQG DFG-in dasatinib ABL1 0.53 0.093 EPHA3 0.88 0.63 0.93

1M17 DFG-in erlotinib EGFR 0.67 0.67 EGFR 0.94 0.25 0.95

3BLRa DFG-out flavopiridol CDK9 6.4 6.4 CDK9 0.96 0.17 0.97

2ITY DFG-in gefitinib EGFR 1 1 EGFR 0.80 1 0.80

2HYY DFG-out imatinib ABL1 12 0.7 DDR1 0.95 1 0.95

3GVU DFG-out imatinib ABL2 10 0.7 DDR1 0.94 1 0.93

1T46 DFG-out imatinib cKIT 14 0.7 DDR1 0.95 1 0.95

3HEC DFG-out imatinib P38A NA 0.7 DDR1 0.91 0.56 0.92

2PL0 DFG-out imatinib LCK 40 0.7 DDR1 0.92 0.56 0.93

1XBB DFG-in imatinib SYK NA 0.7 DDR1 0.95 0 0.99

1XKK DFG-out lapatinib EGFR 2.4 2.4 EGFR 1 1.00 1

1UU3 DFG-in LY-333531 PDK1 700 2.5 PRKCQ 0.79 0.60 0.79

2A4L DFG-in roscovitine CDK2 3400 260 CSNK1D 0.99 0.99

1A9U DFG-in SB-203580 P38A 12 12 P38A 0.97 0.38 0.99

3HEG DFG-out sorafenib P38A 370 1.5 DDR1 0.87 0.21 0.91

1NVR DFG-in staurosporine CHK1 3.2 0.024 SLK 0.62 0.47 0.86

3G0Ea DFG-out sunitinib KIT 0.37 0.075 PDGFRb 0.43 0.77 0.35

3E5A DFG-in VX-680 AURA 4.1 4 ABL2 0.94 0.14 1

3FC1 DFG-in VX-745 P38A 2.8 2.8 P38A 1 1 1
a The X-ray structure is a mutant kinase. bKinase target in which the inhibitor is bound in the X-ray. cExperimental Kd values (nM)25 for the inhibitor

against the X-ray crystallized target. d The best experimental Kd value (nM) reported for the inhibitor.25 eThe kinase target that exhibited the best Kd.
25

fCalculated using the (true positives þ true negatives)/total no. of kinase targets (i.e., 283). g True positives/(true positives þ false negatives). hTrue
negatives/(true negatives þ false positive). NA means experimental Kd data are not determined as the inhibitors exhibit weak activity at a 10 μM
compound screening concentration.25
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The BSS prediction captures this feature extremely well and
suggests the compound to be active against one additional
target apart from the cocrystal, which again is a false-
positive. This overall prediction success rate clearly provides
an advantage in identifying selective kinase inhibitors (if
needed) and can reliably distinguish inhibitors that demon-
strate broad-spectrum kinase activity.

Figure 1b shows the outcome for the six inhibitors bound
to the kinase inactive form. As in the previous cases, the
extent of selectivity for a relatively promiscuous inhibitor
like sunitinib and a highly selective inhibitor like lapatinib
is captured well by the predictions (Table 1). In addition,
BIRB-796 and sorafenib, both with good selectivity profiles
as indicated by their activities against 9 out of 283 and 15 out
of 342 tested kinase targets, are predicted reasonably well
(Figure S1 and Table S2 in the Supporting Information).

The consistency in the prediction outcomes when using
different kinase-inhibitor cocomplexes as starting points is
investigated using imatinib. Figure 1b shows the results for
imatinib using ABL1, ABL2, cKIT, P38A, and LCK. The inhi-
bitor is bound to theDFG-out conformation in all of the above
five kinases with nearly identical binding modes. However,
the number of hot spot residues identified in each case varies
from 15 to 18 with only nine hot spot residues being
common to all of the five X-ray structures (Table S3 in the
Supporting Information). In spite of these differences, three
of the X-ray starting structures captured the same nine
experimentally active kinase targets completely (Figure S1
in the Supporting Information), while the remaining two
X-ray structures recovered five out of the nine experimen-
tally active kinase targets successfully. A total of∼50 unique
targets are predicted by the use of the five different X-ray
structures (Figure S3 in the Supporting Information). This is
reduced to ∼20 targets (minimizing false positives) if a
consensus approach is used, and the same is recommended
when multiple X-ray structures are available for the same
kinase inhibitor. The current predictions also suggest that
imatinib would prefer to be bound to the DFG-out conforma-
tion in LYN, FYN, SNF1LK, SNF1LK2, STK36, and YES1
kinases as the predictions are consistent across the five
DFG-out X-ray targets used in this study (Figure S3 in the
Supporting Information). This clearly highlights the advan-
tage on the use of the current approach over those reported

in the literature in identifying inhibitors that are bound to
either of the two possible kinase conformations.

In the case of imatinib, the inhibitor is bound exactly the
sameway and in the same position (nearly superimposable)
in all of the five different X-ray cocomplexes; hence, the
results are consistent. However, caution should be exercised
when extrapolating these observations universally against
other known kinase inhibitors bound to several kinases and
where the inhibitor may be bound slightly differently in the
different cocomplexes (based on unpublished results for
sorafenib). The current approach assumes that the inhibitor
is bound exactly the sameway and in the sameorientation in
all of the kinase targets. However, the plasticity of the binding
site residues and side chain flexibility that allows for better/
worse interactions with the inhibitor is not captured using a
single X-ray cocomplex as reference for the whole kinome.

The average overall prediction accuracy and specificity of
∼90% showcase the successful application of the BSS
approach in predicting the kinase inhibitor selectivity map
against a majority of the human kinome targets (Table S2 in
the Supporting Information). The prediction results are also
relatively insensitive to other type of cutoff thresholds used
to classify the experimental activity (Figure S1 in the Sup-
porting Information). To our knowledge, this is the first time
in the literature where a systematic one-to-one comparison
of experiments and predictions are reported for themajority
of the human kinome targets. Unlike a typical QSAR ap-
proach, the current paradigmdoes not use any experimental
information for model building or hypothesis generation
that could subsequently be used for predictions. We believe
the success of the current approach to reside mainly in our
ability to treat the microenvironment of the ligand binding
appropriately. The hot spots are identified through quantita-
tive evaluation of the residue-based contribution to the
binding energetics and its breakdown to their corresponding
electrostatic and (non)-polar components as well as using
the above interaction type to arrive at residue conservation
profiles across the other residues in the same position in the
kinome alignment.26 Further analysis of the hot spot resi-
dues, especially for sunitinib and gefitinib, show that the
current procedure identified binding site residues that are
also hit bymost of the inhibitors considered here (Table S4 in
the Supporting Information). This partially explains the

Figure 1. Number of kinase targets predicted to be active (yellow), classified as experimentally active (Kd e 100 nM; green) and the true
positives (blue) are shown for kinase inhibitors bound to the DFG-in (a) or DFG-out (b) kinase conformations.



r 2010 American Chemical Society 398 DOI: 10.1021/ml1001097 |ACS Med. Chem. Lett. 2010, 1, 395–399

pubs.acs.org/acsmedchemlett

overprediction of the “active” kinase targets as no ligand
specific/selective residues were identified as a binding hot
spot.

By identifying it as a hot spot for most of the inhibitors
studied here, the present result re-emphasizes the relevance
of the key gate-keeper residue reported in literature2,28

(Table S4 in the Supporting Information). The identified
hot spot residues also reveal that there are very few residues
that are consistently hit by all of the inhibitors, and the
majority of the ligands see the surrounding residues diffe-
rently, albeit occupying the ATP binding site. In addition, the
present study clearly demonstrates that there are several
energetically important binding site residues apart from
the six residues (gate-keeper, two from hinge, and three
from glycine-rich loop) that Sheridan et al.24 identify to be
important for the Karaman et al.25 data set used in their
investigation. For example, g10 binding hot spots are iden-
tified for the inhibitors bound to the inactive kinase con-
formation (except sunitinib) with several of them not
identified in Sheridan et al. study24 (Table S4 in the Support-
ing Information).

While all of the inhibitors considered in this study were
compared against the 283 kinases for which consistent
experimental data were available,25 a recent study by the
same group expanded the number of kinases to 359 and
updated the results for sunitinib and sorafenib.29 Among this
set, 59 additional targets could be mapped reliably to the
kinome alignment. The predictions were able to capture
6/12 kinase targets (CHEK2, IRAK, MAP3K2, ULK1, ULK3,
and YSK4) successfully for sunitinib. Sorafenib, on the other
hand, was inactive against 58 of the additional 59 targets,
and the predictions captured all of the inactives correctly.
This success allows us to propose the screening of the other
inhibitors considered in this study against only a subpanel
of the additional 59 kinases for which the predictions
are positive (Table S5 in the Supporting Information). For
instance, erlotinib, flavopiridol, VX-680, VX-745, and lapati-
nib are predicted to be inactive against all of the 59 addi-
tional targets, while a Ser/Thr-kinase like QSK (or SIK3)
would be potently inhibited by LY-333531, dasatinib, imati-
nib, SB-203580, and gefitinib. Indeed, a very recent publica-
tion from a different group indicates dasatinib to interact
with QSK,30 providing additional impetus for verifying the
other predictions.

Predictions that demonstrate decent correlations to already
known experimental findings enable new target(s) identifica-
tion for existing inhibitors or alternatively help in repurposing
known inhibitor(s) based on the validated therapeutic potential
for new kinase target(s). Prospectively, we provide the predic-
tions for the 15 kinase inhibitors on ∼150 targets for which
experimental Kd values are still unavailable (Table S6 in the
Supporting Information). Several of these kinases do not have
small molecule kinase inhibitors reported in the literature, and
the inhibitors pursued in this study could serve as tool com-
pounds for investigating these kinases.31

In summary, the BSS approach has been successfully
validated using a consistent experimental data set enabling
this semiautomated modeling procedure to be routinely
used in a discovery setting for the prediction of potential

kinase inhibitor selectivity using the kinase cocrystallized
inhibitors. The automation achieved in this in silicoworkflow
allows rapid evaluation of kinase off-target activity against a
large number of cocrystallized kinase inhibitors. The proce-
dure is also able to reliably predict the selectivity profile of
promiscuous kinase inhibitors like staurosporine and highly
selective inhibitors like lapatinib (Figure 1) and to distinguish
the selectivity profiles for inhibitors bound to either the DFG-
in or the DFG-out kinase conformation with similar accura-
cies. The overall ∼90% prediction accuracy and specificity
reflect the decent statistical outcome achieved through the
current modeling procedure.

The successful development of small molecule kinase
inhibitors hinges on identifying suitable ligands that exhibit
activity against a select combination of kinases2,32 relevant
to the disease mechanism/network. By successfully validat-
ing the current approach with extensive experimental data
and one-on-one comparison across the majority of the hu-
man kinome targets, well-validated computational tools are
now available to facilitate the identification of inhibitors,
demonstrating targeted multikinase inhibition profile.33 In-
directly, the current approach also strives to potentially
remove targeting undesirable kinases that could later on
manifest in clinical attrition.34

SUPPORTING INFORMATION AVAILABLE Comparison of
experimental and predicted data along with the new kinase targets
prediction for inhibitors with no experimental data and a brief descrip-
tionof themethodand the sequences used, alongwith the structures of
the kinase inhibitors considered in this study. This material is available
free of charge via the Internet at http://pubs.acs.org.
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